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Abstract

In this paper, we provide tools for convergence and performance analysis of an agreement
protocol for a network of integrator agents with directed information flow. Moreover, we an-
alyze algorithmic robustness of this consensus protocol for the case of a network with mobile
nodes and switching topology. We establish a connection between the Fiedler eigenvalue of
the graph Laplacian and the performance of this agreement protocol. We demostrate that a
class of directed graphs, called balanced graphs, have a crucial role in solving average-consensus
problems. Based on the properties of balanced graphs, a group disagreement function (i.e. Lya-
punov function) is proposed for convergence analysis of this agreement protocol for networks
with directed graphs. This group disagreement function is later used for convergence analysis
for the agreement problem in networks with switching topology. We provide simulation results
that are consistent with our theoretical results and demonstrate the effectiveness of the proposed
analytical tools.

1 Introduction

Distributed decision-making for coordination of networks of dynamic agents has attracted several
researchers in recent years. This is partly due to broad application of multi-agent system is many
areas including cooperative control of unmanned air vehicles (UAVs), flocking of birds [16, 18, 17],
schooling for underwater vehicles, distributed sensory networks, attitude alignment of clusters of
satellites, and congestion control in communication networks [15].

Agreement problems have a long history in the field of computer science, particularly in au-
tomata theory and distributed computation [12]. In many applications involving multi-agent/multi-
vehicle systems, groups of agents need to agree upon certain quantities of interest. Such quantities
might or might not be related to the motion of the individual agents. As a result, it is important
to address agreement problems in their general form (as far as the inter-agent communication is
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concerned) for networks of dynamic agents with directed information flow under link failure and
creation (i.e. variable network topology).

Our main contribution in this paper is to provide convergence, performance, and robustness
analysis of an agreement protocol for a network of integrator agents with directed information flow
and (perhaps) switching topology.

In the past, a number of researchers have worked in problems that are essentially different forms
of agreement problems with differences regarding the types of agent dynamics, the properties of the
graphs, and the names of the tasks of interest. In [19, 5, 4], graph Laplacians are used for the task
of formation stabilization for groups of agents with linear dynamics. The drawbacks of a pure linear
approach to formation stabilization can be summarized as follows: i) collision-avoidance cannot be
directly taken into account (or be formulated as part of the problem), ii) performing the rotation
of a formation cannot be addressed, and iii) the method has not yet been extended to systems with
nonlinear dynamics that are not feedback linearizable. Special cases of this approach are known as
leader-follower type architectures and have been widely used by numerous researchers [13, 2, 11].
In [18, 17], flocking and self-alignment is analyzed from the point of view of statistical mechanics
and a phase transition phenomenon is observed that is equivalent to connectivity of graphs. The
work in [10] focuses on attitude alignment for undirected dynamic graphs in which the agents have
simple dynamics motivated by the model used in [18]. It is claimed that the connectivity of the
graph on average is sufficient for convergence of the heading angles of the agents. In [14], the
authors addressed convergence of linear and nonlinear protocols for networks with undirected links
in presence or lack of communication time-delays. Theoretically, the linear case of agreement in
an undirected network without time-delay is much easier than the analysis for the case of directed
graphs in the present paper.

In this paper, we provide convergence analysis of an agreement protocol for a network of in-
tegrators with a directed information flow and fixed or switching topology. Our analysis relies on
several tools from algebraic graph theory [1, 8] and matrix theory [9]. We establish a connection
between the performance of this consensus protocol and the Fiedler eigenvalue of graph Laplacian
which is also known as the algebraic connectivity of the graph. It turns out that a class of directed
graphs called balanced graphs have a crucial role in derivation of an invariant quantity and a Lya-
punov function for convergence analysis of average-consensus problems on directed graphs. This
Lyapunov function is a measure of group disagreement in the network. We show that a directed
graph solves the average-consensus problem using protocol A if and only if it is balanced. Further-
more, we use properties of balanced networks to analyze the convergence of an agreement protocol
for networks with switching topology. This variation of the network topology is usually due to link
failures or creations in networks with mobile nodes. We introduce a common Lyapunov function
that guarantees asymptotic convergence to a consensus in a network with switching information
flow. We provide simulation results that demonstrate our theoretical predictions and show the
novel analytical tools that we propose are effective.

An outline of this paper is as follows. In Section 2, we provide some background on algebraic
graph theory. In Section 3, we present the setup for agreement problems in directed networks with
fixed or switching topology. In Section 4, we state some useful results in matrix theory that are later
used in this paper. Our main results are given in separate subsections of Section 5. In Section 6, the
simulation results are presented. for agreement on four digraphs and average-consensus problem for
a network with switching information flow. Finally, in Section 7, we make our concluding remarks.
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2 Preliminaries: Algebraic Graph Theory

In this section, we introduce some basic concepts and notation in graph theory that will be used
throughout the paper. More information is available in [8, 3].

Let G = (V, E ,A) be a weighted directed graph (or digraph) with n nodes and a weighted
adjacency matrix A = [aij ] where aij ≥ 0 for all i, j ∈ I = {1, 2, . . . , n} : i 6= j and aii = 0 for all
i ∈ I. The set of neighbors of the node vi is denoted by Ni and defined as Ni = {j ∈ I : aij > 0}.
The in–degree and out–degree of node vi are, respectively, defined as follows:

degin(vi) =
n∑

j=1

aji, degout(vi) =
n∑

j=1

aij . (1)

For an ordinary graph with A that has binary elements degout(vi) = |Ni|. The degree matrix of G
is a diagonal matrix denoted by ∆ = [∆ij ] where ∆ij = 0 for all i 6= j and ∆ii = degout(vi). The
(weighted) graph Laplacian matrix associated with G is defined as

L = L(G) = ∆−A. (2)

With a slight misuse of notation, we use L(G) = L(A) to denote the Laplacian of graph G. By
definition, the graph Laplacian has an eigenvector at λ1 = 0 and a right eigenvector wr = 1 =
(1, 1, . . . , 1)T with identical nonzero elements. Furthermore, for a strongly connected digraph G of
order n, the Laplacian matrix satisfies the following rank condition:

rank(L) = n− 1 (3)

A digraph is called strongly connected if and only if any two distinct nodes of the graph can be
connected via a path that respects the orientation of the edges of the digraph.

Note. Throughout this paper, we assume all graphs have at least two nodes (i.e. are non-trivial)
and there is no cycle of length one (i.e. an edge from a node to itself).

For an undirected graph G, L is symmetric and positive semi-definite. The disagreement function
(also referred to as Laplacian potential) associated with G is defined in [14] as follows

ΦG(x) = xT Lx =
1
2

∑
ij∈E

(xj − xi)2 (4)

where xi denotes the value of node vi. The value of a node might represent physical quantities
including attitude, position, temperature, voltage, and so on. We say two distinct nodes vi and vj

agree if and only if xi = xj . Apparently, ΦG(x) = 0 if and only if all neighboring nodes in G agree.
If in addition, the graph is connected, then all nodes in the graph agree and a consensus is reached.
Therefore, ΦG(x) is a meaningful function that quantifies the group disagreement in a network.

For an undirected graph G that is connected the following well-known property holds [8]:

min
x 6= 0

1T x = 0

xT Lx

‖x‖2
= λ2(L) (5)

The proof follows from a special case of Courant–Fischer Theorem in [9]. We will later establish a
connection between λ2(L̂), called the Fiedler eigenvalue of L̂ [6, 7], and the performance of a linear
agreement protocol where L̂ is closely-related to L.
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3 Agreement Problem on Directed Graphs

Consider a network of integrators

ẋi = ui, i ∈ I, xi, ui ∈ R

with information flow (or topology) G = (V, E ,A).

Remark 1. The main reason behind focusing on an interconected system with nodes that have
extremely simple dynamics is that we would like to discuss the main network and communication
related aspects of agreement rather than addressing the compelexities that arise from considering
agents with nonlinear dynamics and possible input constraints.

The asymptotic agreement problem can be described as follows. Give a protocol that guarantees
the state of the network as a whole asymptotically converges to an equilibrium state x∗ ∈ Rn with
identical elements, i.e. x∗i = x∗j =: α for all i, j ∈ I, i 6= j. The element α that determines x∗ is
called the group decision value. An agreement problem in which α = Ave(x(0)) is referred to as the
average-consensus problem where Ave(x) = (

∑n
i=1 xi)/n. Further information regarding a formal

definition of average-consensus problem is available in [14].
In this paper, our goal is to address convergence and performance issues of linear consensus

protocols for a network with directed information flow. Furthermore, we analyze convergence of
the distributed agreement algorithms for networks with variable topology, or switching information
flow.

We focus on solving the average-consensus problem using the following agreement protocol :

ui(t) =
∑
j∈Ni

aij(xj(t)− xi(t)), i ∈ I (A)

In distributed average-consensus problem, the objective of each node of the network is to calculate
the average of the initial values of all n nodes provided that no node has an edge with all other
nodes (unless n = 2) and the network is connected.

Given Protocol (A), the state of the network evolves according to the following linear system

ẋ(t) = −Lx(t) (6)

where L = L(G) is the Laplacian induced by the information flow G. In a network with variable
topology G, convergence analysis of Protocol (A) is equivalent to stability analysis for a hybrid
system

ẋ(t) = −Lkx(t), k = s(t) (7)

where Lk = L(Gk) is the Laplacian of Gk, s(t) : R → IΓ ⊂ Z is a switching signal, and Γ 3 Gk

is a finite collection of digraphs (of order n) with the index set IΓ. Later, we will see that Γ is a
relatively large set for n � 1. The task of stability analysis for the hybrid system in (7) is rather
challenging partly because q, p ∈ IΓ, q 6= p most likely implies LqLp 6= LqLp. Thus, rather simple
ways of constructing a common Lyapunov function for this switching system fail.
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Figure 1: A demonstration of Geršgorin Theorem applied to graph Laplacian.

4 Matrix Theory and Properties of Graph Laplacians

The key in the stability analysis of system (6) is in the spectral properties of graph Laplacian. The
following result follows from Geršgorin disk theorem [9]:

Proposition 1. (spectral localization) Let G = (V, E ,A) be a digraph with the Laplacian L. Denote
the maximum node out–degree of G by δ(G) = maxi degout(vi). Then, all the eigenvalues of L =
L(G) are located in the following disk

D(G) = {z ∈ C : |z − δ(G)| ≤ δ(G)} (8)

centered at z = δ(G) + 0j in the complex plane (see Figure 1). Moreover, the real-part of the
eigenvalues of −L are non-positive.

Proof. Based on the Geršgorin disk theorem, all the eigenvalues of L = [lij ] are located in the
union of the following n disks

Di = {z ∈ C : |z − lii| ≤
∑

j∈I,j 6=i

|lij |} (9)

But lii = ∆ii and ∑
j∈I,j 6=i

|lij | = degout(vi) = ∆ii

Thus, Di = {z ∈ C : |z − ∆ii| ≤ ∆ii}. On the other hand, all these n disks are contained in
the largest disk D(G) with radius ∆(G). Clearly, all the eigenvalues of −L are located in the
disk D′(G) = {z ∈ C : |z + δ(G)| ≤ δ(G)} that is the mirror image of D(G) with respect to the
imaginary axis and the result follows.

The following result guarantees the convergence of Protocol (A) for directed graphs.

Proposition 2. Consider a network of integrators with an information flow G that is a strongly
connected digraph. Then, Protocol (A) globally asymptotically solves an agreement problem, i.e.
the solution asymptotically converges to an equilibrium x∗ such that x∗i = x∗j for all i, j, i 6= j.

Proof. Since G is strongly connected, rank(L) = n − 1 and L has a zero eigenvalue λ1 = 0 with
algebraic multiplicity of one. Based on Proposition 1, the rest of the eigenvalues of L have negative
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Figure 2: A connected digraph of order 3 that does not solve the average-consensus problem using
Protocol (A).

real-parts and therefore the linear system in (6) is stable. On the other hand, any equilibrium x∗ of
(6) is a right eigenvector of L associated with λ1 = 0. Since the eigenspace associated with the zero
eigenvalue is one-dimensional, there exists an α ∈ R such that x∗ = α1, i.e. x∗i = x∗j = α, ∀i, j.

Keep in mind that Proposition 2 does not guarantee whether the decision value α of each node
is equal to Ave(x(0)) or not. In other words, Proposition 2 does not address the average-consensus
problem.

A sufficient condition for the decision value of each node α to be equal to Ave(x(0) is that∑n
i=1 ui ≡ 0. If G is undirected (i.e. aij = aji > 0,∀i, j : aij 6= 0), automatically the condition∑n
i=1 ui = 0,∀x holds and Ave(x(t)) is an invariant quantity [14]. However, this property does not

hold for a general digraph.
A simple counterexample is a strongly connected digraph of order n = 3, shown in Figure 2,

that is unweighted and has the following sets of vertices and edges:

V = {1, 2, 3}, E = {12, 23, 31, 13}.

For the digraph G = (V, E),
∑3

i=1 ui = x3 − x1. Thus, if nodes 1 and 3 disagree, the property∑3
i=1 ui = 0 does not hold for all x. On the other hand, the reader can verify that for this example

L =

 2 −1 −1
0 1 −1
−1 0 1


and x∗i = [x1(0) + x2(0) + 2x3(0)]/4 (this is due to Theorem 1). This decision value is apparently
in the convex hull of all the xi(0)’s but it is different from Ave(x(0)) if and only if x1(0) + x2(0) 6=
2x3(0). As a result, for all initial conditions satisfying x1(0) + x2(0) 6= 2x3(0), Protocol (A) does
not solve the average-consensus problem but still all nodes reach an agreement. This motivates us
to characterize the class of all digraphs that solve the average-consensus problem.

Before presenting our main result, we need to provide a limit theorem for exponential matrices
of the form exp(−Lt). This is because the solution of (6) is given by

x(t) = exp(−Lt)x(0) (10)

and by explicit calculation of exp(−Lt), we can obtain the decision value of each node after reaching
consensus for a general digraph. The following theorem is closely related to a famous limit theorem
in the theory of non-negative matrices known as Perron-Frobenius Theorem [9] (we discuss the
specifics of this relation in an upcoming paper).
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Notation. Following the notation in [9], we denote the set of m × n real matrices by Mm,n and
the set of square n × n matrices by Mn. Furthermore, throughout this paper, the right and left
eigenvectors of the Laplacian L associated with λ1 = 0 are denoted by wr and wl, respectively.

Theorem 1. Assume G is a strongly connected digraph with Laplacian L satisfying Lwr = 0,
wT

l L = 0, and wT
l wr = 1. Then

R = lim
t→+∞

exp(−Lt) = wrw
T
l ∈ Mn (11)

Proof. Let A = −L and let J be the Jordan form associated with A, i.e. A = SJS−1. We have
exp(At) = S exp(Jt)S−1 and as t → +∞, exp(Jt) converges to a matrix Q = [qij ] with a single
nonzero element q11 = 1. The fact that other blocks in the diagonal of exp(Jt) vanish is due to
the property that Re(λk(A)) < 0 for all k ≥ 2 where λk(A) is the kth largest eigenvalue of A in
terms of magnitude |λk|. Notice that R = SQS−1. Since AS = SJ the first column of S is wr.
Similarly, S−1A = JS−1 that means the first row of S−1 is wT

l . Due to the fact that S−1S = I,
wl satisfies the property wT

l wr = 1 as stated in the question. A straightforward calculation shows
that R = wrw

T
l ∈ Mn.

5 Main Results

In this section, we present three of our main results: i) characterization of all connected digraphs
that solve average-consensus problem using Protocol (A), and ii) the relation between the perfor-
mance of Protocol (A) and the Fiedler eigenvalue (i.e. algebraic connectivity) of graphs, and iii)
robust agreement under switching information flows and link failures/creations.

5.1 Balanced Graphs and Average-Consensus on Digraphs

The following class of digraphs turns out to be instrumental in solving average-consensus problems:

Definition 1. (balanced graphs) We say the node vi of a digraph G = (V, E ,A) is balanced if and
only if its in-degree and out-degree are equal, i.e. degout(vi) = degin(vi). A graph G = (V, E ,A) is
called balanced if and only if all of its nodes are balanced, i.e.

∑
j aij =

∑
j aji,∀i.

Example 1. Any undirected graph is balanced. Furthermore, the digraphs shown in Figure 3 are
all balanced.

Here is our first main result:

Theorem 2. Consider a network of integrators with directed information flow G = (V, E ,A) that
is strongly connected. Then, G globally asymptotically solves the average-consensus problem using
Protocol (A) if and only if G is balanced.

Proof. The proof follows from Propositions 3 and 4.

Remark 2. According to Theorem 2, if a graph is not balanced, then it does not globally solve the
average consensus-problem using Protocol (A). This assertion is consistent with the counterexample
given in Figure 2.

7
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Figure 3: Three examples of balanced graphs.

Proposition 3. Consider a network of integrators with directed information flow G = (V, E ,A)
that is strongly connected. Then, the digraph G globally asymptotically solves the average-consensus
problem using Protocol (A) if and only if 1T L = 0.

Proof. From Theorem 1, with wr =
1√
n
1 we obtain

x∗ = lim
t→+∞

x(t) = Rx0 = wr(wT
l x0) =

1√
n

(wT
l x0)1.

This implies Protocol 1 globally exponentially solves a consensus problem with the decision value
1√
n
(wT

l x0) for each node. If this decision value is equal to Ave(x0),∀x0 ∈ Rn, then necessarily
1√
n
wl = 1√

n
, i.e. wl = wr = 1√

n
1. This implies that 1 is the left eigenvector of L. To prove the

converse, assume that 1T L = 0. Let us take wr = 1√
n
1, wl = β1 with β ∈ R, β 6= 0. From condition

wT
l wr = 1, we get β = 1√

n
and wl = 1√

n
1. This means that the decision value for every node is

1√
n
(wT

l x0) = 1
n1T x0 = Ave(x0).

Corollary 1. Assume all the conditions in Proposition 3 hold. Suppose L has a left eigenvector
γ = (γ1, . . . , γn)T associated with λ = 0 that is a nonnegative vector in Rn (i.e. a vector with
non-negative elements) satisfying

∑
i γi > 0. Then, the decision value of the group after reaching

consensus is given by

α =
∑

i γixi(0)∑
i γi

(12)

i.e. the decision value is in the convex hull of initial values of the nodes.

Proof. We have γT L = 0 and thus γT u ≡ 0 (because u = −Lx). Therefore, β = γT x is an invariant
quantity. Assume, the digraph G is not balanced. Then, still an agreement is asymptotically
reached. Let α be the decision value of all nodes after reaching consensus. We have γT x∗ = γT x(0)
due to invariance of γT x(t). But x∗ = α1, thus we obtain(∑

i

γi

)
α = γT x(0)

8



and the result follows.
The following result shows that if one of the agents uses a relatively small update rate (or

step-size), i.e. γi∗ � γi for all i 6= i∗. Then, the value of all nodes converges to the value of x∗i . In
other words, the agent i∗ plays the role of a leader in leader-follower type architecture.

Corollary 2. (multi-rate integrators) Consider a network of multi-rate integrator with the node
dynamics

γiẋi = ui, γi > 0,∀i ∈ I (13)

Assume each node applies Protocol (A). Then, an agreement is globally asymptotically reached and
the decision value of the group is

α =
∑

i γixi(0)∑
i γi

(14)

Proof. The dynamics of the network evolves according to

Dẋ = −Lx

where D = diag(γ) is a diagonal matrix with the ith diagonal element that is equal to γi > 0. The
last equation can be rewritten as

ẋ = −L̃x

where L̃ = D−1L = diag(1/γ1, . . . , 1/γn)L is a valid Laplacian matrix for a digraph G̃ with adja-
cency matrix Ã = D−1A (i.e. the weights of the edges leaving node i are divided by γi). Clearly,
γ is a vector with positive elements that is the left eigenvector of L̃ and based on Corollary 1 the
decision value is in the weighted average of xi(0)’s with weights specified by γ.

Proposition 4. Let G = (V, E ,A) be a digraph with an adjacency matrix A = [aij ] satisfying
aii = 0,∀i. Then, all the following statements are equivalent:

i) G is balanced,

ii) wl = 1 is the left eigenvector of the Laplacian of G associates with the zero eigenvalue, i.e.
1T L = 0.

iii)
∑n

i=1 ui = 0,∀x ∈ Rn with ui =
∑

j∈Ni
aij(xj − xi).

Proof. We show i) ⇐⇒ ii) and ii) ⇐⇒ iii).
Proof of i) ⇐⇒ ii): We have ∆ii = degout(vi) and degin(vi) =

∑
j,j 6=i aji, thus the ith column

sum of L is equal to∑
i

lji =
∑
i,j 6=i

lji + lii = −degin(vi) + degout(vi) = 0 ⇔ node vi of G is balanced

Noting that the i column sum of L is the same as the ith element of the row vector 1T L, one
concludes that 1T L = 0 iff all the nodes of G are balanced, i.e. G is balanced.

Proof of ii) ⇐⇒ iii): Since u = −Lx, (
∑

i ui = 0,∀x) ⇔ (1T u = −(1T L)x = 0,∀x) ⇔ 1T L =
0.
Remark 3. Notice that in Proposition 4, the graph G does not need to be connected. Moreover,
Proposition 4 holds for a general digraph with an weighted adjacency matrix that has nonzero
diagonal elements. However, here we assume the no trivial cycles of length one in the graph. If
aii 6= 0, then i ∈ Ni and the term aii(xi − xi) ≡ 0. In other words, ui remains unchanged.

9



5.2 Performance of Group Agreement and the Mirror Operation

In this section, we discuss performance issues of Protocol (A) with balanced graphs. An important
consequence of Proposition 4 is that for networks with balanced information flow, α = Ave(x) is an
invariant quantity. This is certainly not true for an arbitrary digraph. The invariance of Ave(x)
allows decomposition of x according to the following equation:

x = α1 + δ (15)

where α = Ave(x) and δ ∈ Rn satisfies
∑

i δi = 0. We refer to δ as the (group) disagreement
vector. The vector δ is orthogonal to 1 and belongs to an (n− 1)-dimensional subspace called the
disagreement eigenspace of L provided that G is strongly connected. Moreover, δ evolves according
to the (group) disagreement dynamics given by

δ̇ = −Lδ. (16)

It turns out that a useful property of balanced graphs is that for any balanced digraph G, there
exists an undirected graph that has the same disagreement function as G. In the following, we
formally define this induced undirected graph.

Definition 2. (mirror graph/operation) Let G = (V, E ,A) be weighted digraph. Let Ẽ be the set
of reverse edges of G obtained by reversing the order of all the pairs in E . The mirror of G denoted
by Ĝ = M(G) is an undirected graph in the form Ĝ = (V, Ê , Â) with the same set of nodes as G,
the set of edges Ê = E ∪ Ẽ , and the symmetric adjacency matrix Â = [âij ] with elements

âij = âji =
aij + aji

2
≥ 0 (17)

The following result shows that the operations of L and Sym on a weighted adjacency matrix
A commute. Moreover,

Theorem 3. Let G be a digraph with adjacency matrix A = adj(G) and Laplacian L = L(G).
Then Ls = Sym(L) = (L + LT )/2 is a valid Laplacian matrix for Ĝ = M(G) if and only if G is
balanced, i.e. the following diagram commutes iff G is balanced

G
adj−−−−→ A L−−−−→ L

M
y Sym

y Sym

y
Ĝ −−−−→

adj
Â −−−−→

L
L̂

(18)

Moreover, if G is balanced, the disagreement functions of G and Ĝ are equal.

Proof. We know that G is balanced iff 1T L = 0. Since L1 = 0, we have 1T L = 0 ⇐⇒
1
2(L + LT )1 = 0. Thus, G is balanced iff Ls has a right eigenvector of 1 associated with λ = 0, i.e.
Ls is a valid Laplacian matrix. Now, we prove that Ls = L(Ĝ). For doing so, let us calculate ∆̂
element-wise, we get

∆̂ii =
∑

j

aij + aji

2
=

1
2
(degout(vi) + degin(vi)) = degout(vi) = ∆ii

10



Thus, ∆̂ = ∆. On the other hand, we have

Ls =
1
2
(L + LT ) = ∆− A + AT

2
= ∆̂− Â = L̂ = L(Ĝ)

The last part simply follows from the fact that L̂ is equal to the symmetric part of L and xT (L−
LT )x ≡ 0.

Notation. For simplicity of notation, in the context of algebraic graph theory, λk(G) is used to
denote λk(L(G)).

Now, we are ready to present our main result on performance of the Protocol (A) in terms of
the speed of reaching a consensus as a group.

Theorem 4. (performance of agreement) Consider a network of integrators with a directed infor-
mation flow G that is balanced and strongly connected. Then, given Protocol (A), the following
statements hold:

i) the group disagreement (vector) δ as the solution of the disagreement dynamics in (16) globally
asymptotically vanishes with a speed that is equal to κ = λ2(Ĝ) (or the Fiedler eigenvalue of
the mirror graph of G), i.e.

‖δ(t)‖ ≤ ‖δ(0)‖ exp(−κt), (19)

ii) the following smooth, positive definite, and proper function

V (δ) =
1
2
‖δ‖2 (20)

is a valid Lyapunov function for the disagreement dynamics.

Proof. We have

V̇ = −δT Lδ = −δT Lsδ = −δT L̂δ ≤ −λ2(Ĝ)‖δ‖2 = −2κV (δ) < 0,∀δ 6= 0 (21)

This proves that V (δ) is a valid Lyapunov function for the group disagreement dynamics. Moreover,
δ(t) vanishes globally exponentially fast with a speed of κ as t → +∞.. The fact that Ls = L̂ is a
valid Laplacian matrix for an undirected graph (i.e. mirror of G) follows from Theorem 3 and the
inequality

δT L̂δ ≥ λ2(Ĝ)‖δ‖2, ∀δ : 1T δ = 0 (22)

which is due to equation (5).
A well-known observation regarding the Fiedler eigenvalue of an undirected graph is that for

dense graphs λ2 is relatively large and for sparse graphs λ2 is relatively small [8] (this is why λ2 is
called the algebraic connectivity). According to this observation, from Theorem 4, one can conclude
that a network with dense interconnections solves an agreement problem faster than a connected
but sparse network. This is consistent with common sense regarding agreement in a group. As a
special case, a cycle of length n that creates a balanced digraph on n nodes solves an agreement
problem. However, this is a relatively slow way to solve such a consensus problem.

11



5.3 Agreement in Networks with Switching Topology

Consider a network of mobile agents that communicate with each other and need to agree upon
a certain objective of interest or perform synchronization. Since, the nodes of the network are
moving, it is not hard to imagine that some of the existing communication links can fail simply due
to the existence of an obstacle between two agents. The opposite situation can arise where new
links between nearby agents are craeted because the agents come to an effective range of detection
with respect to each other. In other words, in the graph G representing the information flow of
the network, certain edges can be added or removed from G. Here, we are interested to investigate
that in case of a network with switching topology whether it is still possible to reach a consensus or
not.

Consider a hybrid system with a continuous-state x ∈ Rn and a discrete-state G that belongs
to a finite set of digraphs

Γn = {G : G is a digraph of order n that is strongly connected and balanced}

that can be analytically expressed in the form

Γn = {G = (V, E ,A) : rank(L(G)) = n− 1,1TL(G) = 0}. (23)

Given the node dynamics and protocol, the continuous-state of the system evolves according to the
following dynamics

ẋ(t) = −L(Gk)x(t), k = s(t), Gk ∈ Γn (24)

where s(t) : R≥0 → IΓn is a switching signal and IΓn ⊂ N is the index set associated with the
elements of Γn. Clearly, Γn is a finite set, because either a digraph has no edges or it is a complete
graph with n(n− 1) directed edges.

The key in solving the agreement problem for mobile networks with switching topology is a
basic property of the Lyapunov function in (20) and the properties of balanced graphs. Note that
the function V (δ) = 1

2‖δ‖
2 does not depend on G or L = L(G). This property of V (δ) makes it

an appropriate candidate as a common Lyapunov function for stability analysis of the switching
system (24).

Theorem 5. For any arbitrary switching signal s(·), the solution of the switching system (24),
globally asymptotically converges to Ave(x(0)) (i.e. average-consensus is reached). Moreover, the
following smooth, positive definite, and proper function

V (δ) =
1
2
‖δ‖2 (25)

is a valid common Lyapunov function for the disagreement dynamics given by

δ̇(t) = −L(Gk)δ(t), k = s(t), Gk ∈ Γn (26)

Furthermore, the disagreement vector δ vanishes exponentially fast with the least rate of

κ∗ = min
G∈Γn

λ2(L(Ĝ))) (27)

In other words, ‖δ(t)‖ ≤ ‖δ(0)‖ exp(−κ∗t).

12



Proof. Due the fact that Gk is balanced for all k and u = −L(Gk)x, we have 1T u = −(1TL(Gk))x ≡
0. Thus, α = Ave(x) is an invariant quantity which allows us to decompose x as x = α1+δ. There-
fore, the disagreement switching system induced by (24) takes the form (26). Calculating V̇ , we
get

V̇ = −δTL(Gk)δ = −δTL(Ĝk)δ ≤ −λ2(L(Ĝk))‖δ‖2 ≤ −κ∗‖δ‖2 = −2κ∗V (δ) < 0,∀δ 6= 0 (28)

This guarantees that V (δ) is a valid common Lyapunov function for the disagreement switching
system (26). Moreover, we have

V (δ(t)) ≤ V (δ(0)) exp(−2κ∗t) ⇒ ‖δ(t)‖ ≤ ‖δ(0)‖ exp(−κ∗t)

and the disagreement vector δ(t) globally exponentially vanishes with a speed of κ∗ > 0 as t → +∞.
Finally, the minimum in (27) always exists and is achieved because Γn is a finite set.

6 Simulation Results

Figure 4 shows four different networks each with n = 10 nodes that are all strongly connected and
balanced. The weights associated with all the edges are 1. For the following initial node values
satisfying Ave(x(0)) = 0

x(0) = (−10.2999, 0.2575,−4.4997, 3.6258, 3.0922, 9.0156, 3.5099,−2.6645, 2.4552,−4.4921)T

we have plotted the state trajectories and the disagreement function ‖δ‖2 associated with these four
digraphs in Figure 5. It is clear that as the number of the edges of the graph increase, algebraic
connectivity (or λ2) increases, and the settling time of the trajectory of the node values decreases.
The case of a directed cycle of length n = 10, or Ga, has the largest over-shoot. In all four cases,
an agreement is asymptotically reached and the performance is improved as a function of λ2(Ĝk)
for k ∈ {a, b, c, d}.

31 2 4 5

678910
(a) (b)

(c) (d)

Figure 4: For examples of balanced and strongly connected digraphs: (a) Ga, (b) Gb, (c) Gc , and
(d) Gd satisfying.
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Figure 5: For examples of balanced and strongly connected digraphs: (a) Ga, (b) Gb, (c) Gc , and
(d) Gd satisfying.

In Figure 6(a), a finite-state machine is shown with the set of states {Ga, Gb, Gc, Gd} represent-
ing the discrete-states of a network with switching topology as a hybrid system. The hybrid system
starts at the discrete-state Gb and switches every T = 1 second to the next state according to the
state machine in Figure 6(a). The continuous-time state trajectories and the group disagreement
(i.e. ‖δ‖2) of the network are shown in Figure 6(b). Clearly, the group disagreement is monotoni-
cally decreasing. One can observe that an average-consensus is reached asymptotically. Moreover,
the group disagreement vanishes exponentially fast.

7 Conclusion

In this paper, we addressed convergence and performance problems for an agreement protocol for a
network of dynamic agents with integrator dynamics and directed information flow. Moreover, we
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Figure 6: (a) A finite-state machine with four states representing the discrete-states of a network
with variable topology and (b) trajectory of the node values and the group disagreement for a
network with a switching information flow.

analyzed robustness of this consensus protocol changes in the topology of a network with mobile
nodes. We showed that balanced graphs are the only type of digraphs that solve the average-
consensus problem with the aforementioned agreement protocol. Moreover, we proved that for any
balanced digraph, there exists an undirected graph called the mirror graph. This mirror graph has
the same Laplacian disagreement function as the original digraph and its Laplacian is the symmetric
part of the Laplacian of the network in question. A commutative diagram was given that shows the
operations of taking Laplacian and symmetric part of a matrix commute for weighted adjacency
matrices of balanced graphs.

Fiedler eigenvalue of the mirror of a digraph is used to quantify the speed of convergence of
the above agreement protocol. Moreover, a simple disagreement function was introduced as a
Lyapunov function for the group disagreement dynamics. This was later used to provide a common
Lyapunov function that allowed convergence analysis of an agreement protocol for a network with
mobile nodes and switching topology. We provided simulation results that were consistent with our
theoretical predictions and demonstrated the use of new graph theoretical tools and notions.
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